Matematika Sekolah Menengah Atas (4/5)

[tex] \sf \lim\limits_{x \to1} \: \dfrac{ {x}^{2} - 1 }{x - 1} = ...[/tex]

(4/5)

[tex] \sf \lim\limits_{x \to1} \: \dfrac{ {x}^{2} - 1 }{x - 1} = ...[/tex]

Penjelasan dengan langkah-langkah:

[tex] \sf \lim\limits_{x \to1} \: \dfrac{ {x}^{2} - 1 }{x - 1} [/tex]

[tex] \sf \lim\limits_{x \to1} \: \dfrac{ {x}^{2} - 1 {}^{2} }{x - 1 }[/tex]

[tex] \sf \lim\limits_{x \to1} \: \dfrac{ {(x - 1})(x + 1) }{x - 1} [/tex]

[tex] \sf \lim\limits_{x \to1} \:\dfrac{ \cancel{(x - 1)}(x + 1)}{ \cancel{x - 1} }[/tex]

[tex] \sf \lim\limits_{x \to1} \: x + 1[/tex]

[tex] \sf1 + 1[/tex]

[tex] \sf2[/tex]

Lim x² - 1/x - 1

x → 1

x² - 1/x - 1

= (x - 1)(x + 1)/(x - 1)

= (x + 1)

= (1 + 1)

= 2

:)

[answer.2.content]